Skip to content

Commit 6b6396f

Browse files
committed
speedup, second order correction, intensity control
1 parent a63cf10 commit 6b6396f

File tree

1 file changed

+56
-32
lines changed

1 file changed

+56
-32
lines changed

scripts/img2imgalt.py

Lines changed: 56 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313

1414
# Debugging notes - the original method apply_model is being called for sd1.5 is in modules.sd_hijack_utils and is ldm.models.diffusion.ddpm.LatentDiffusion
1515
# For sdxl - OpenAIWrapper will be called, which will call the underlying diffusion_model
16-
16+
# When controlnet is enabled, the underlying model is not available to use, therefore we skip
1717

1818
def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
1919
x = p.init_latent
@@ -78,11 +78,11 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
7878
return x / x.std()
7979

8080

81-
Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])
81+
Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment", "second_order_correction", "noise_sigma_intensity"])
8282

8383

8484
# Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736
85-
def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
85+
def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps, correction_factor, sigma_intensity):
8686
x = p.init_latent
8787

8888
s_in = x.new_ones([x.shape[0]])
@@ -98,11 +98,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
9898

9999
for i in trange(1, len(sigmas)):
100100
shared.state.sampling_step += 1
101-
102-
x_in = torch.cat([x] * 2)
103101
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
104-
105-
106102
if shared.sd_model.is_sdxl:
107103
cond_tensor = cond['crossattn']
108104
uncond_tensor = uncond['crossattn']
@@ -113,46 +109,69 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
113109
image_conditioning = torch.cat([p.image_conditioning] * 2)
114110
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
115111

116-
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
117-
118112
if i == 1:
119113
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
114+
dt = (sigmas[i] - sigmas[i - 1]) / (2 * sigmas[i])
120115
else:
121116
t = dnw.sigma_to_t(sigma_in)
117+
dt = (sigmas[i] - sigmas[i - 1]) / sigmas[i - 1]
118+
119+
noise = noise_from_model(x, t, dt, sigma_in, cond_in, cfg_scale, dnw, skip)
120+
121+
if correction_factor > 0:
122+
recalculated_noise = noise_from_model(x + noise, t, dt, sigma_in, cond_in, cfg_scale, dnw, skip)
123+
noise = recalculated_noise * correction_factor + noise * (1 - correction_factor)
124+
125+
x += noise
126+
127+
sd_samplers_common.store_latent(x)
128+
129+
# This shouldn't be necessary, but solved some VRAM issues
130+
#del x_in, sigma_in, cond_in, c_out, c_in, t
131+
#del eps, denoised_uncond, denoised_cond, denoised, dt
132+
133+
shared.state.nextjob()
134+
135+
return x / (x.std()*(1 - sigma_intensity) + sigmas[-1]*sigma_intensity)
122136

137+
def noise_from_model(x, t, dt, sigma_in, cond_in, cfg_scale, dnw, skip):
123138

139+
if cfg_scale == 1: # Case where denoised_uncond should not be calculated - 50% speedup, also good for sdxl in experiments
140+
x_in = x
141+
sigma_in = sigma_in[1:2]
142+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
143+
cond_in = {"c_concat":[cond_in["c_concat"][0][1:2]], "c_crossattn": [cond_in["c_crossattn"][0][1:2]]}
124144
if shared.sd_model.is_sdxl:
125145
num_classes_hack = shared.sd_model.model.diffusion_model.num_classes
126146
shared.sd_model.model.diffusion_model.num_classes = None
127147
try:
128-
eps = shared.sd_model.model(x_in * c_in, t, {"crossattn": cond_in["c_crossattn"][0]} )
148+
eps = shared.sd_model.model(x_in * c_in, t[1:2], {"crossattn": cond_in["c_crossattn"][0]})
129149
finally:
130150
shared.sd_model.model.diffusion_model.num_classes = num_classes_hack
131151
else:
132-
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
152+
eps = shared.sd_model.apply_model(x_in * c_in, t[1:2], cond=cond_in)
133153

134-
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
154+
return -eps * c_out* dt
155+
else :
156+
x_in = torch.cat([x] * 2)
135157

136-
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
158+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
137159

138-
if i == 1:
139-
d = (x - denoised) / (2 * sigmas[i])
160+
if shared.sd_model.is_sdxl:
161+
num_classes_hack = shared.sd_model.model.diffusion_model.num_classes
162+
shared.sd_model.model.diffusion_model.num_classes = None
163+
try:
164+
eps = shared.sd_model.model(x_in * c_in, t, {"crossattn": cond_in["c_crossattn"][0]} )
165+
finally:
166+
shared.sd_model.model.diffusion_model.num_classes = num_classes_hack
140167
else:
141-
d = (x - denoised) / sigmas[i - 1]
142-
143-
dt = sigmas[i] - sigmas[i - 1]
144-
x = x + d * dt
145-
146-
sd_samplers_common.store_latent(x)
147-
148-
# This shouldn't be necessary, but solved some VRAM issues
149-
del x_in, sigma_in, cond_in, c_out, c_in, t,
150-
del eps, denoised_uncond, denoised_cond, denoised, d, dt
168+
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
151169

152-
shared.state.nextjob()
170+
denoised_uncond, denoised_cond = (eps * c_out).chunk(2)
153171

154-
return x / sigmas[-1]
172+
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
155173

174+
return -denoised * dt
156175

157176
class Script(scripts.Script):
158177
def __init__(self):
@@ -183,17 +202,20 @@ def ui(self, is_img2img):
183202
cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0, elem_id=self.elem_id("cfg"))
184203
randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0, elem_id=self.elem_id("randomness"))
185204
sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False, elem_id=self.elem_id("sigma_adjustment"))
205+
second_order_correction = gr.Slider(label="Correct noise by running model again", minimum=0.0, maximum=1.0, step=0.01, value=0.5, elem_id=self.elem_id("second_order_correction"))
206+
noise_sigma_intensity = gr.Slider(label="Weight scaling std vs sigma based", minimum=-1.0, maximum=2.0, step=0.01, value=0.5, elem_id=self.elem_id("noise_sigma_intensity"))
186207

187208
return [
188209
info,
189210
override_sampler,
190211
override_prompt, original_prompt, original_negative_prompt,
191212
override_steps, st,
192213
override_strength,
193-
cfg, randomness, sigma_adjustment,
214+
cfg, randomness, sigma_adjustment, second_order_correction,
215+
noise_sigma_intensity
194216
]
195217

196-
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
218+
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment, second_order_correction, noise_sigma_intensity):
197219
# Override
198220
if override_sampler:
199221
p.sampler_name = "Euler"
@@ -211,7 +233,9 @@ def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subs
211233
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
212234
and self.cache.original_prompt == original_prompt \
213235
and self.cache.original_negative_prompt == original_negative_prompt \
214-
and self.cache.sigma_adjustment == sigma_adjustment
236+
and self.cache.sigma_adjustment == sigma_adjustment \
237+
and self.cache.second_order_correction == second_order_correction \
238+
and self.cache.noise_sigma_intensity == noise_sigma_intensity
215239
same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
216240

217241
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
@@ -231,10 +255,10 @@ def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subs
231255
cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
232256
uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
233257
if sigma_adjustment:
234-
rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)
258+
rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st, second_order_correction, noise_sigma_intensity)
235259
else:
236260
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
237-
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
261+
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment, second_order_correction, noise_sigma_intensity)
238262

239263
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
240264

0 commit comments

Comments
 (0)