Skip to content

Commit e68c75f

Browse files
Update README.md
1 parent ce26efe commit e68c75f

File tree

1 file changed

+3
-1
lines changed

1 file changed

+3
-1
lines changed

README.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,8 @@
11
# ARTEMIS
22
ARTEMIS (Adaptive mesh Refinement Time-domain ElectrodynaMIcs Solver) is a high-performance coupled electrodynamics–micromagnetics solver for full physical modeling of signals in microelectronic circuitry. The overall strategy couples a finite-difference time-domain (FDTD) approach for Maxwell’s equations to a magnetization model described by the Landau–Lifshitz–Gilbert (LLG) equation. The algorithm is implemented in the Exascale Computing Project (ECP) software framework, AMReX, which provides effective scalability on manycore and GPU-based supercomputing architectures. Furthermore, the code leverages ongoing developments of the Exascale Application Code, WarpX, which is primarily being developed for plasma wakefield accelerator modeling. Our temporal coupling scheme provides second-order accuracy in space and time by combining the integration steps for the magnetic field and magnetization into an iterative sub-step that includes a trapezoidal temporal discretization for the magnetization. The performance of the algorithm is demonstrated by the excellent scaling results on NERSC multicore and GPU systems, with a significant (59×) speedup on the GPU using a node-by-node comparison. The utility of our code is validated by performing simulations of transmission lines, rectangle electromagnetic waveguides, magnetically tunable filters, on-chip coplanar waveguides and resonators, magnon-photon coupling circuits, and so on.
33

4+
For questions, please reach out to Zhi (Jackie) Yao (jackie_zhiyao@lbl.gov) and Andy Nonaka (ajnonaka@lbl.gov).
5+
46
# Installation
57
## Download AMReX Repository
68
``` git clone git@github.com:AMReX-Codes/amrex.git ```
@@ -53,4 +55,4 @@ E_array = ad0['Ex'].to_ndarray()
5355
2. S. S. Sawant, Z. Yao, R. Jambunathan and A. Nonaka, Characterization of transmission lines in microelectronic circuits Using the ARTEMIS solver, IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 8, pp. 31-39, 2023, doi: 10.1109/JMMCT.2022.3228281
5456
[link](https://ieeexplore.ieee.org/abstract/document/9980353)
5557
3. R. Jambunathan, Z. Yao, R. Lombardini, A. Rodriguez, and A. Nonaka, Two-fluid physical modeling of superconducting resonators in the ARTEMIS framework, Computer Physics Communications, 291, p.108836. doi:10.1016/j.cpc.2023.108836
56-
[link](https://www.sciencedirect.com/science/article/pii/S0010465523001819?casa_token=rWpwl8cmtUYAAAAA:rZTndzf_pqx0lo9jtTRzLLxh0tIf_AD0zHcRRJ_ciwMw-n-X2doK5RprMS4wyrO9TEw5oDZAB7Kr)
58+
[link](https://www.sciencedirect.com/science/article/pii/S0010465523001819?casa_token=rWpwl8cmtUYAAAAA:rZTndzf_pqx0lo9jtTRzLLxh0tIf_AD0zHcRRJ_ciwMw-n-X2doK5RprMS4wyrO9TEw5oDZAB7Kr)

0 commit comments

Comments
 (0)